![](https://deepseekcoder.github.io/static/images/result3.png)
Artificial general intelligence (AGI) is a kind of synthetic intelligence (AI) that matches or surpasses human cognitive capabilities across a large range of cognitive jobs. This contrasts with narrow AI, which is restricted to particular jobs. [1] Artificial superintelligence (ASI), on the other hand, describes AGI that greatly exceeds human cognitive abilities. AGI is thought about among the definitions of strong AI.
Creating AGI is a main objective of AI research study and of business such as OpenAI [2] and Meta. [3] A 2020 study determined 72 active AGI research study and advancement tasks throughout 37 nations. [4]
The timeline for achieving AGI remains a topic of continuous argument amongst scientists and specialists. As of 2023, some argue that it may be possible in years or years; others keep it might take a century or longer; a minority think it might never ever be achieved; and another minority declares that it is already here. [5] [6] Notable AI researcher Geoffrey Hinton has actually expressed issues about the rapid progress towards AGI, suggesting it could be attained sooner than lots of anticipate. [7]
There is argument on the specific meaning of AGI and concerning whether modern big language models (LLMs) such as GPT-4 are early kinds of AGI. [8] AGI is a typical subject in sci-fi and futures research studies. [9] [10]
Contention exists over whether AGI represents an existential danger. [11] [12] [13] Many specialists on AI have stated that reducing the threat of human extinction posed by AGI needs to be an international priority. [14] [15] Others find the development of AGI to be too remote to present such a threat. [16] [17]
Terminology
![](https://d.newsweek.com/en/full/2573964/deepseek-phone-app.jpg?w\u003d1600\u0026h\u003d1600\u0026q\u003d88\u0026f\u003d19ed1d1fca16e9fa4ef8c15710b6d03c)
AGI is also called strong AI, [18] [19] full AI, [20] human-level AI, [5] human-level smart AI, or general intelligent action. [21]
Some scholastic sources schedule the term "strong AI" for computer programs that experience sentience or awareness. [a] On the other hand, weak AI (or narrow AI) has the ability to resolve one specific issue but lacks general cognitive abilities. [22] [19] Some scholastic sources use "weak AI" to refer more broadly to any programs that neither experience consciousness nor have a mind in the same sense as human beings. [a]
Related concepts include artificial superintelligence and transformative AI. An artificial superintelligence (ASI) is a theoretical type of AGI that is much more generally intelligent than human beings, [23] while the notion of transformative AI connects to AI having a big influence on society, for instance, similar to the farming or industrial revolution. [24]
A framework for categorizing AGI in levels was proposed in 2023 by Google DeepMind scientists. They define five levels of AGI: emerging, proficient, expert, virtuoso, and superhuman. For instance, a competent AGI is specified as an AI that exceeds 50% of knowledgeable adults in a wide variety of non-physical tasks, and a superhuman AGI (i.e. a synthetic superintelligence) is likewise defined however with a threshold of 100%. They consider big language models like ChatGPT or LLaMA 2 to be circumstances of emerging AGI. [25]
Characteristics
Various popular definitions of intelligence have actually been proposed. Among the leading propositions is the Turing test. However, there are other popular definitions, and some researchers disagree with the more popular methods. [b]
Intelligence characteristics
Researchers generally hold that intelligence is required to do all of the following: [27]
reason, use technique, solve puzzles, and make judgments under uncertainty
represent knowledge, consisting of sound judgment understanding
plan
discover
- communicate in natural language
- if necessary, incorporate these skills in completion of any given goal
Many interdisciplinary methods (e.g. cognitive science, computational intelligence, and decision making) consider extra qualities such as creativity (the ability to form unique psychological images and concepts) [28] and autonomy. [29]
Computer-based systems that exhibit a lot of these capabilities exist (e.g. see computational imagination, automated reasoning, choice support system, robotic, evolutionary calculation, smart representative). There is debate about whether contemporary AI systems possess them to an appropriate degree.
Physical traits
Other capabilities are considered desirable in intelligent systems, as they may impact intelligence or aid in its expression. These consist of: [30]
- the capability to sense (e.g. see, hear, etc), and
- the ability to act (e.g. move and control things, modification location to check out, etc).
This includes the capability to discover and react to risk. [31]
Although the capability to sense (e.g. see, hear, etc) and the capability to act (e.g. relocation and control items, change area to check out, etc) can be desirable for some smart systems, [30] these physical capabilities are not strictly required for an entity to qualify as AGI-particularly under the thesis that large language models (LLMs) might currently be or end up being AGI. Even from a less optimistic point of view on LLMs, there is no company requirement for an AGI to have a human-like kind; being a silicon-based computational system is sufficient, offered it can process input (language) from the external world in location of human senses. This interpretation lines up with the understanding that AGI has never ever been proscribed a specific physical embodiment and therefore does not demand a capability for mobility or standard "eyes and ears". [32]
Tests for human-level AGI
Several tests meant to validate human-level AGI have been considered, consisting of: [33] [34]
The concept of the test is that the maker has to attempt and pretend to be a male, by addressing questions put to it, and it will only pass if the pretence is reasonably convincing. A significant portion of a jury, who need to not be expert about makers, should be taken in by the pretence. [37]
AI-complete problems
A problem is informally called "AI-complete" or "AI-hard" if it is believed that in order to solve it, one would need to implement AGI, due to the fact that the solution is beyond the abilities of a purpose-specific algorithm. [47]
There are numerous problems that have actually been conjectured to require basic intelligence to fix as well as human beings. Examples consist of computer system vision, natural language understanding, and dealing with unforeseen situations while resolving any real-world problem. [48] Even a specific job like translation requires a device to check out and compose in both languages, follow the author's argument (factor), comprehend the context (knowledge), and consistently recreate the author's original intent (social intelligence). All of these issues need to be resolved all at once in order to reach human-level maker efficiency.
However, a lot of these jobs can now be performed by contemporary large language models. According to Stanford University's 2024 AI index, AI has reached human-level performance on lots of benchmarks for checking out comprehension and visual reasoning. [49]
History
Classical AI
Modern AI research study began in the mid-1950s. [50] The very first generation of AI scientists were encouraged that artificial general intelligence was possible which it would exist in just a few years. [51] AI pioneer Herbert A. Simon wrote in 1965: "makers will be capable, within twenty years, of doing any work a guy can do." [52]
Their forecasts were the inspiration for Stanley Kubrick and Arthur C. Clarke's character HAL 9000, who embodied what AI scientists thought they could create by the year 2001. AI pioneer Marvin Minsky was a consultant [53] on the task of making HAL 9000 as sensible as possible according to the consensus forecasts of the time. He stated in 1967, "Within a generation ... the problem of developing 'expert system' will considerably be fixed". [54]
Several classical AI jobs, such as Doug Lenat's Cyc task (that started in 1984), and Allen Newell's Soar project, were directed at AGI.
However, in the early 1970s, it ended up being obvious that scientists had actually grossly undervalued the difficulty of the task. Funding agencies became skeptical of AGI and put scientists under increasing pressure to produce beneficial "used AI". [c] In the early 1980s, Japan's Fifth Generation Computer Project revived interest in AGI, setting out a ten-year timeline that consisted of AGI objectives like "continue a casual discussion". [58] In reaction to this and the success of specialist systems, both industry and federal government pumped cash into the field. [56] [59] However, confidence in AI stunningly collapsed in the late 1980s, and the goals of the Fifth Generation Computer Project were never satisfied. [60] For the second time in 20 years, AI scientists who forecasted the imminent achievement of AGI had actually been mistaken. By the 1990s, wiki-tb-service.com AI researchers had a track record for making vain promises. They became reluctant to make forecasts at all [d] and prevented reference of "human level" expert system for worry of being identified "wild-eyed dreamer [s]. [62]
Narrow AI research
In the 1990s and early 21st century, mainstream AI attained industrial success and scholastic respectability by focusing on specific sub-problems where AI can produce verifiable results and industrial applications, such as speech acknowledgment and suggestion algorithms. [63] These "applied AI" systems are now utilized extensively throughout the innovation industry, and research study in this vein is heavily moneyed in both academia and market. As of 2018 [upgrade], advancement in this field was considered an emerging trend, and a fully grown phase was expected to be reached in more than ten years. [64]
At the millenium, numerous traditional AI researchers [65] hoped that strong AI might be developed by combining programs that resolve various sub-problems. Hans Moravec composed in 1988:
I am confident that this bottom-up route to expert system will one day meet the conventional top-down path majority method, all set to supply the real-world competence and the commonsense understanding that has actually been so frustratingly evasive in thinking programs. Fully intelligent makers will result when the metaphorical golden spike is driven uniting the two efforts. [65]
However, even at the time, this was contested. For example, Stevan Harnad of Princeton University concluded his 1990 paper on the symbol grounding hypothesis by stating:
The expectation has actually often been voiced that "top-down" (symbolic) approaches to modeling cognition will in some way fulfill "bottom-up" (sensory) approaches someplace in between. If the grounding considerations in this paper are valid, then this expectation is hopelessly modular and there is actually only one practical path from sense to symbols: from the ground up. A free-floating symbolic level like the software application level of a computer will never be reached by this path (or vice versa) - nor is it clear why we ought to even attempt to reach such a level, because it looks as if arriving would simply amount to uprooting our signs from their intrinsic significances (therefore merely reducing ourselves to the practical equivalent of a programmable computer). [66]
Modern synthetic basic intelligence research
The term "synthetic general intelligence" was used as early as 1997, by Mark Gubrud [67] in a discussion of the implications of completely automated military production and operations. A mathematical formalism of AGI was proposed by Marcus Hutter in 2000. Named AIXI, the proposed AGI representative increases "the capability to satisfy objectives in a wide variety of environments". [68] This type of AGI, characterized by the capability to increase a mathematical meaning of intelligence instead of display human-like behaviour, [69] was likewise called universal expert system. [70]
The term AGI was re-introduced and popularized by Shane Legg and Ben Goertzel around 2002. [71] AGI research activity in 2006 was described by Pei Wang and Ben Goertzel [72] as "producing publications and initial outcomes". The very first summer season school in AGI was organized in Xiamen, China in 2009 [73] by the Xiamen university's Artificial Brain Laboratory and OpenCog. The very first university course was given up 2010 [74] and 2011 [75] at Plovdiv University, Bulgaria by Todor Arnaudov. MIT presented a course on AGI in 2018, organized by Lex Fridman and featuring a number of guest speakers.
Since 2023 [upgrade], a little number of computer system researchers are active in AGI research, and many contribute to a series of AGI conferences. However, progressively more researchers have an interest in open-ended knowing, [76] [77] which is the concept of permitting AI to constantly discover and innovate like people do.
Feasibility
Since 2023, the development and potential achievement of AGI stays a subject of extreme argument within the AI neighborhood. While conventional consensus held that AGI was a remote objective, current improvements have led some researchers and market figures to claim that early kinds of AGI may already exist. [78] AI leader Herbert A. Simon speculated in 1965 that "makers will be capable, within twenty years, of doing any work a guy can do". This prediction failed to come real. Microsoft co-founder Paul Allen thought that such intelligence is not likely in the 21st century due to the fact that it would require "unforeseeable and essentially unpredictable advancements" and a "clinically deep understanding of cognition". [79] Writing in The Guardian, roboticist Alan Winfield declared the gulf in between contemporary computing and human-level expert system is as large as the gulf in between current area flight and useful faster-than-light spaceflight. [80]
A more obstacle is the lack of clarity in defining what intelligence involves. Does it need consciousness? Must it show the ability to set objectives in addition to pursue them? Is it simply a matter of scale such that if design sizes increase adequately, intelligence will emerge? Are centers such as planning, thinking, and causal understanding needed? Does intelligence need clearly reproducing the brain and its specific faculties? Does it need emotions? [81]
Most AI scientists think strong AI can be accomplished in the future, but some thinkers, like Hubert Dreyfus and Roger Penrose, deny the possibility of attaining strong AI. [82] [83] John McCarthy is among those who believe human-level AI will be achieved, however that today level of progress is such that a date can not precisely be forecasted. [84] AI specialists' views on the expediency of AGI wax and wane. Four polls carried out in 2012 and 2013 recommended that the average price quote among professionals for when they would be 50% confident AGI would arrive was 2040 to 2050, depending upon the poll, with the mean being 2081. Of the specialists, 16.5% responded to with "never" when asked the exact same question however with a 90% confidence rather. [85] [86] Further current AGI progress considerations can be discovered above Tests for confirming human-level AGI.
A report by Stuart Armstrong and Kaj Sotala of the Machine Intelligence Research Institute discovered that "over [a] 60-year amount of time there is a strong predisposition towards anticipating the arrival of human-level AI as in between 15 and 25 years from the time the prediction was made". They analyzed 95 forecasts made in between 1950 and 2012 on when human-level AI will happen. [87]
In 2023, Microsoft researchers released an in-depth examination of GPT-4. They concluded: "Given the breadth and depth of GPT-4's capabilities, our company believe that it might fairly be deemed an early (yet still insufficient) version of a synthetic general intelligence (AGI) system." [88] Another research study in 2023 reported that GPT-4 outshines 99% of people on the Torrance tests of innovative thinking. [89] [90]
Blaise Agüera y Arcas and Peter Norvig composed in 2023 that a considerable level of basic intelligence has currently been attained with frontier models. They composed that unwillingness to this view comes from four primary reasons: a "healthy skepticism about metrics for AGI", an "ideological commitment to alternative AI theories or methods", a "dedication to human (or biological) exceptionalism", or a "issue about the economic implications of AGI". [91]
2023 likewise marked the introduction of big multimodal models (big language designs efficient in processing or generating numerous modalities such as text, audio, and images). [92]
In 2024, OpenAI launched o1-preview, the very first of a series of models that "invest more time believing before they respond". According to Mira Murati, this capability to believe before reacting represents a brand-new, additional paradigm. It enhances design outputs by spending more computing power when producing the answer, whereas the model scaling paradigm improves outputs by increasing the design size, training data and training compute power. [93] [94]
An OpenAI employee, Vahid Kazemi, claimed in 2024 that the business had accomplished AGI, mentioning, "In my opinion, we have currently accomplished AGI and it's even more clear with O1." Kazemi clarified that while the AI is not yet "better than any human at any job", it is "better than the majority of humans at a lot of tasks." He also dealt with criticisms that big language designs (LLMs) simply follow predefined patterns, comparing their learning procedure to the scientific technique of observing, assuming, and verifying. These declarations have stimulated dispute, as they count on a broad and unconventional meaning of AGI-traditionally comprehended as AI that matches human intelligence throughout all domains. Critics argue that, while OpenAI's designs demonstrate remarkable adaptability, they may not completely meet this standard. Notably, Kazemi's remarks came soon after OpenAI removed "AGI" from the terms of its partnership with Microsoft, prompting speculation about the business's tactical intentions. [95]
Timescales
Progress in expert system has actually traditionally gone through durations of fast progress separated by periods when progress appeared to stop. [82] Ending each hiatus were basic advances in hardware, software application or both to create space for additional progress. [82] [98] [99] For example, the computer system hardware offered in the twentieth century was not enough to carry out deep learning, which requires great deals of GPU-enabled CPUs. [100]
In the introduction to his 2006 book, [101] Goertzel says that quotes of the time needed before a genuinely versatile AGI is built vary from ten years to over a century. Since 2007 [update], the consensus in the AGI research study community seemed to be that the timeline talked about by Ray Kurzweil in 2005 in The Singularity is Near [102] (i.e. between 2015 and 2045) was plausible. [103] Mainstream AI scientists have actually offered a wide variety of opinions on whether development will be this rapid. A 2012 meta-analysis of 95 such opinions found a bias towards predicting that the onset of AGI would take place within 16-26 years for contemporary and historical predictions alike. That paper has been criticized for how it categorized viewpoints as expert or non-expert. [104]
In 2012, Alex Krizhevsky, Ilya Sutskever, and Geoffrey Hinton established a neural network called AlexNet, which won the ImageNet competitors with a top-5 test error rate of 15.3%, significantly much better than the second-best entry's rate of 26.3% (the conventional method used a weighted amount of ratings from various pre-defined classifiers). [105] AlexNet was concerned as the initial ground-breaker of the existing deep learning wave. [105]
In 2017, researchers Feng Liu, Yong Shi, and Ying Liu conducted intelligence tests on openly readily available and easily available weak AI such as Google AI, Apple's Siri, and others. At the maximum, these AIs reached an IQ value of about 47, which corresponds approximately to a six-year-old kid in first grade. An adult comes to about 100 typically. Similar tests were performed in 2014, with the IQ score reaching a maximum worth of 27. [106] [107]
In 2020, OpenAI established GPT-3, a language model efficient in performing numerous diverse jobs without particular training. According to Gary Grossman in a VentureBeat article, while there is consensus that GPT-3 is not an example of AGI, it is considered by some to be too advanced to be categorized as a narrow AI system. [108]
In the exact same year, Jason Rohrer used his GPT-3 account to develop a chatbot, and supplied a chatbot-developing platform called "Project December". OpenAI requested modifications to the chatbot to adhere to their safety standards; Rohrer disconnected Project December from the GPT-3 API. [109]
In 2022, DeepMind developed Gato, a "general-purpose" system capable of performing more than 600 different jobs. [110]
In 2023, Microsoft Research published a study on an early variation of OpenAI's GPT-4, contending that it exhibited more basic intelligence than previous AI designs and demonstrated human-level performance in jobs covering numerous domains, such as mathematics, coding, and law. This research study sparked an argument on whether GPT-4 might be considered an early, insufficient version of artificial general intelligence, emphasizing the need for more exploration and assessment of such systems. [111]
In 2023, the AI researcher Geoffrey Hinton mentioned that: [112]
The idea that this stuff could in fact get smarter than individuals - a couple of individuals thought that, [...] But many people believed it was method off. And I believed it was method off. I believed it was 30 to 50 years and even longer away. Obviously, I no longer believe that.
In May 2023, Demis Hassabis likewise stated that "The progress in the last couple of years has actually been pretty extraordinary", which he sees no reason that it would slow down, expecting AGI within a years and even a few years. [113] In March 2024, Nvidia's CEO, Jensen Huang, mentioned his expectation that within five years, AI would be capable of passing any test at least in addition to human beings. [114] In June 2024, the AI researcher Leopold Aschenbrenner, a previous OpenAI staff member, estimated AGI by 2027 to be "noticeably possible". [115]
Whole brain emulation
While the advancement of transformer designs like in ChatGPT is considered the most promising course to AGI, [116] [117] whole brain emulation can work as an alternative technique. With entire brain simulation, a brain design is developed by scanning and mapping a biological brain in information, and after that copying and replicating it on a computer system or another computational device. The simulation design should be sufficiently faithful to the initial, so that it acts in virtually the exact same way as the original brain. [118] Whole brain emulation is a kind of brain simulation that is gone over in computational neuroscience and neuroinformatics, and for medical research study purposes. It has actually been talked about in synthetic intelligence research [103] as a technique to strong AI. Neuroimaging innovations that could deliver the necessary comprehensive understanding are enhancing rapidly, and futurist Ray Kurzweil in the book The Singularity Is Near [102] forecasts that a map of adequate quality will end up being readily available on a comparable timescale to the computing power required to replicate it.
Early approximates
For low-level brain simulation, a very effective cluster of computers or GPUs would be needed, provided the massive quantity of synapses within the human brain. Each of the 1011 (one hundred billion) nerve cells has on typical 7,000 synaptic connections (synapses) to other neurons. The brain of a three-year-old child has about 1015 synapses (1 quadrillion). This number decreases with age, stabilizing by adulthood. Estimates vary for an adult, varying from 1014 to 5 × 1014 synapses (100 to 500 trillion). [120] An estimate of the brain's processing power, based on a simple switch model for nerve cell activity, is around 1014 (100 trillion) synaptic updates per second (SUPS). [121]
In 1997, Kurzweil took a look at various price quotes for the hardware required to equate to the human brain and adopted a figure of 1016 computations per second (cps). [e] (For contrast, if a "calculation" was comparable to one "floating-point operation" - a measure used to rate existing supercomputers - then 1016 "computations" would be equivalent to 10 petaFLOPS, accomplished in 2011, while 1018 was attained in 2022.) He used this figure to predict the necessary hardware would be readily available sometime in between 2015 and 2025, if the exponential development in computer power at the time of composing continued.
Current research study
The Human Brain Project, an EU-funded initiative active from 2013 to 2023, has actually established a particularly in-depth and publicly available atlas of the human brain. [124] In 2023, scientists from Duke University performed a high-resolution scan of a mouse brain.
Criticisms of simulation-based methods
The synthetic neuron design presumed by Kurzweil and utilized in lots of existing artificial neural network applications is easy compared with biological nerve cells. A brain simulation would likely need to capture the comprehensive cellular behaviour of biological nerve cells, currently comprehended just in broad overview. The overhead presented by full modeling of the biological, chemical, and physical information of neural behaviour (especially on a molecular scale) would require computational powers a number of orders of magnitude bigger than Kurzweil's price quote. In addition, the price quotes do not represent glial cells, which are understood to play a function in cognitive processes. [125]
A fundamental criticism of the simulated brain method derives from embodied cognition theory which asserts that human personification is a vital aspect of human intelligence and is required to ground significance. [126] [127] If this theory is right, any fully functional brain design will need to encompass more than simply the neurons (e.g., a robotic body). Goertzel [103] proposes virtual embodiment (like in metaverses like Second Life) as a choice, but it is unidentified whether this would suffice.
Philosophical perspective
"Strong AI" as specified in philosophy
In 1980, philosopher John Searle coined the term "strong AI" as part of his Chinese space argument. [128] He proposed a distinction in between two hypotheses about expert system: [f]
Strong AI hypothesis: An expert system system can have "a mind" and "consciousness".
Weak AI hypothesis: A synthetic intelligence system can (only) act like it believes and has a mind and awareness.
The first one he called "strong" due to the fact that it makes a more powerful declaration: it assumes something special has occurred to the device that goes beyond those capabilities that we can evaluate. The behaviour of a "weak AI" machine would be exactly similar to a "strong AI" device, however the latter would likewise have subjective conscious experience. This use is likewise typical in scholastic AI research study and books. [129]
In contrast to Searle and traditional AI, some futurists such as Ray Kurzweil utilize the term "strong AI" to mean "human level synthetic basic intelligence". [102] This is not the exact same as Searle's strong AI, unless it is assumed that consciousness is required for human-level AGI. Academic thinkers such as Searle do not believe that is the case, and to most expert system researchers the question is out-of-scope. [130]
Mainstream AI is most thinking about how a program behaves. [131] According to Russell and Norvig, "as long as the program works, they do not care if you call it genuine or a simulation." [130] If the program can behave as if it has a mind, then there is no requirement to understand if it actually has mind - indeed, there would be no method to inform. For AI research, Searle's "weak AI hypothesis" is equivalent to the declaration "synthetic basic intelligence is possible". Thus, according to Russell and Norvig, "most AI scientists take the weak AI hypothesis for given, and don't care about the strong AI hypothesis." [130] Thus, for academic AI research, "Strong AI" and "AGI" are two different things.
Consciousness
Consciousness can have numerous meanings, and some aspects play significant functions in science fiction and the ethics of synthetic intelligence:
Sentience (or "remarkable awareness"): The ability to "feel" perceptions or emotions subjectively, instead of the ability to reason about understandings. Some theorists, such as David Chalmers, utilize the term "awareness" to refer exclusively to extraordinary awareness, which is roughly equivalent to life. [132] Determining why and how subjective experience emerges is called the hard problem of consciousness. [133] Thomas Nagel discussed in 1974 that it "feels like" something to be conscious. If we are not mindful, then it doesn't feel like anything. Nagel utilizes the example of a bat: we can smartly ask "what does it feel like to be a bat?" However, we are not likely to ask "what does it seem like to be a toaster?" Nagel concludes that a bat appears to be conscious (i.e., has awareness) but a toaster does not. [134] In 2022, a Google engineer claimed that the business's AI chatbot, LaMDA, had achieved life, though this claim was extensively contested by other specialists. [135]
Self-awareness: To have mindful awareness of oneself as a different individual, specifically to be consciously familiar with one's own ideas. This is opposed to just being the "topic of one's thought"-an operating system or debugger has the ability to be "familiar with itself" (that is, to represent itself in the very same way it represents whatever else)-however this is not what people typically mean when they use the term "self-awareness". [g]
These traits have an ethical measurement. AI sentience would generate concerns of well-being and legal defense, likewise to animals. [136] Other elements of consciousness associated to cognitive capabilities are likewise pertinent to the idea of AI rights. [137] Finding out how to incorporate innovative AI with existing legal and social frameworks is an emerging concern. [138]
Benefits
AGI might have a wide range of applications. If oriented towards such goals, AGI could help reduce numerous issues in the world such as hunger, hardship and health issue. [139]
AGI could improve efficiency and effectiveness in the majority of jobs. For instance, in public health, AGI could speed up medical research study, significantly against cancer. [140] It could take care of the senior, [141] and democratize access to quick, high-quality medical diagnostics. It might use enjoyable, inexpensive and tailored education. [141] The requirement to work to subsist could become outdated if the wealth produced is appropriately redistributed. [141] [142] This also raises the concern of the place of humans in a drastically automated society.
AGI could also help to make rational choices, and to anticipate and prevent catastrophes. It might likewise assist to gain the advantages of potentially catastrophic technologies such as nanotechnology or environment engineering, while avoiding the associated threats. [143] If an AGI's primary goal is to prevent existential disasters such as human termination (which could be tough if the Vulnerable World Hypothesis turns out to be real), [144] it could take procedures to considerably decrease the threats [143] while lessening the impact of these measures on our quality of life.
Risks
Existential dangers
AGI might represent multiple types of existential risk, which are dangers that threaten "the early termination of Earth-originating smart life or the irreversible and drastic destruction of its capacity for desirable future development". [145] The danger of human termination from AGI has actually been the topic of numerous debates, but there is likewise the possibility that the development of AGI would cause a completely problematic future. Notably, it could be utilized to spread out and protect the set of values of whoever establishes it. If mankind still has moral blind spots comparable to slavery in the past, AGI might irreversibly entrench it, avoiding moral progress. [146] Furthermore, AGI might facilitate mass monitoring and indoctrination, which could be used to develop a stable repressive worldwide totalitarian regime. [147] [148] There is likewise a danger for the machines themselves. If devices that are sentient or otherwise worthwhile of ethical factor to consider are mass created in the future, participating in a civilizational course that indefinitely overlooks their welfare and interests could be an existential disaster. [149] [150] Considering how much AGI could improve mankind's future and help lower other existential threats, Toby Ord calls these existential risks "an argument for continuing with due care", not for "deserting AI". [147]
Risk of loss of control and human termination
The thesis that AI positions an existential danger for people, which this danger requires more attention, is questionable however has been endorsed in 2023 by lots of public figures, AI scientists and CEOs of AI business such as Elon Musk, Bill Gates, Geoffrey Hinton, Yoshua Bengio, Demis Hassabis and Sam Altman. [151] [152]
In 2014, Stephen Hawking slammed prevalent indifference:
So, dealing with possible futures of enormous benefits and dangers, the experts are certainly doing everything possible to make sure the very best outcome, right? Wrong. If a remarkable alien civilisation sent us a message stating, 'We'll arrive in a few decades,' would we just reply, 'OK, call us when you get here-we'll leave the lights on?' Probably not-but this is basically what is taking place with AI. [153]
The potential fate of humanity has in some cases been compared to the fate of gorillas threatened by human activities. The contrast specifies that greater intelligence enabled mankind to dominate gorillas, which are now vulnerable in manner ins which they might not have prepared for. As an outcome, the gorilla has become an endangered species, not out of malice, but just as a collateral damage from human activities. [154]
The skeptic Yann LeCun thinks about that AGIs will have no desire to control mankind which we ought to beware not to anthropomorphize them and analyze their intents as we would for people. He stated that people won't be "wise enough to create super-intelligent makers, yet unbelievably silly to the point of giving it moronic objectives with no safeguards". [155] On the other side, the idea of critical convergence recommends that practically whatever their objectives, smart representatives will have reasons to try to survive and obtain more power as intermediary actions to attaining these goals. And that this does not require having emotions. [156]
Many scholars who are worried about existential threat supporter for more research study into resolving the "control issue" to address the concern: what types of safeguards, algorithms, or architectures can programmers carry out to maximise the probability that their recursively-improving AI would continue to behave in a friendly, instead of devastating, way after it reaches superintelligence? [157] [158] Solving the control issue is made complex by the AI arms race (which might result in a race to the bottom of safety preventative measures in order to launch products before rivals), [159] and making use of AI in weapon systems. [160]
The thesis that AI can position existential danger also has detractors. Skeptics normally state that AGI is not likely in the short-term, or that issues about AGI distract from other concerns connected to present AI. [161] Former Google scams czar Shuman Ghosemajumder thinks about that for lots of people outside of the innovation industry, existing chatbots and LLMs are currently viewed as though they were AGI, causing more misunderstanding and worry. [162]
Skeptics in some cases charge that the thesis is crypto-religious, with an illogical belief in the possibility of superintelligence replacing an irrational belief in a supreme God. [163] Some scientists believe that the communication campaigns on AI existential danger by particular AI groups (such as OpenAI, Anthropic, DeepMind, and Conjecture) might be an at attempt at regulative capture and to inflate interest in their items. [164] [165]
In 2023, the CEOs of Google DeepMind, OpenAI and Anthropic, along with other industry leaders and researchers, issued a joint declaration asserting that "Mitigating the threat of termination from AI ought to be an international concern together with other societal-scale threats such as pandemics and nuclear war." [152]
Mass joblessness
Researchers from OpenAI approximated that "80% of the U.S. labor force might have at least 10% of their work jobs impacted by the introduction of LLMs, while around 19% of workers may see at least 50% of their tasks impacted". [166] [167] They think about workplace employees to be the most exposed, for example mathematicians, accounting professionals or web designers. [167] AGI might have a better autonomy, ability to make decisions, to user interface with other computer system tools, however also to control robotized bodies.
According to Stephen Hawking, the result of automation on the lifestyle will depend on how the wealth will be rearranged: [142]
Everyone can delight in a life of glamorous leisure if the machine-produced wealth is shared, or many people can end up badly poor if the machine-owners effectively lobby against wealth redistribution. So far, the pattern appears to be toward the second option, with technology driving ever-increasing inequality
Elon Musk thinks about that the automation of society will require governments to embrace a universal basic income. [168]
See likewise
Artificial brain - Software and hardware with cognitive capabilities similar to those of the animal or human brain
AI result
AI security - Research area on making AI safe and useful
AI alignment - AI conformance to the desired goal
A.I. Rising - 2018 film directed by Lazar Bodroža
Artificial intelligence
Automated machine learning - Process of automating the application of artificial intelligence
BRAIN Initiative - Collaborative public-private research effort revealed by the Obama administration
China Brain Project
Future of Humanity Institute - Defunct Oxford interdisciplinary research centre
General video game playing - Ability of expert system to play various video games
Generative expert system - AI system capable of producing content in reaction to prompts
Human Brain Project - Scientific research study project
Intelligence amplification - Use of infotech to enhance human intelligence (IA).
Machine ethics - Moral behaviours of manufactured machines.
Moravec's paradox.
Multi-task knowing - Solving several maker discovering jobs at the same time.
Neural scaling law - Statistical law in machine knowing.
Outline of artificial intelligence - Overview of and topical guide to expert system.
Transhumanism - Philosophical motion.
Synthetic intelligence - Alternate term for or kind of synthetic intelligence.
Transfer learning - Machine learning strategy.
Loebner Prize - Annual AI competitors.
Hardware for synthetic intelligence - Hardware specifically developed and optimized for synthetic intelligence.
Weak expert system - Form of artificial intelligence.
Notes
^ a b See below for the origin of the term "strong AI", and see the academic meaning of "strong AI" and weak AI in the short article Chinese space.
^ AI creator John McCarthy writes: "we can not yet characterize in general what type of computational procedures we desire to call smart. " [26] (For a conversation of some meanings of intelligence utilized by synthetic intelligence scientists, see viewpoint of artificial intelligence.).
^ The Lighthill report specifically criticized AI's "grandiose goals" and led the dismantling of AI research in England. [55] In the U.S., DARPA became identified to fund just "mission-oriented direct research study, rather than fundamental undirected research". [56] [57] ^ As AI creator John McCarthy writes "it would be a fantastic relief to the remainder of the employees in AI if the innovators of new general formalisms would reveal their hopes in a more secured type than has sometimes been the case." [61] ^ In "Mind Children" [122] 1015 cps is used. More just recently, in 1997, [123] Moravec argued for 108 MIPS which would approximately represent 1014 cps. Moravec talks in regards to MIPS, not "cps", which is a non-standard term Kurzweil presented.
^ As specified in a standard AI book: "The assertion that machines might potentially act wisely (or, possibly much better, act as if they were smart) is called the 'weak AI' hypothesis by theorists, and the assertion that machines that do so are actually thinking (as opposed to simulating thinking) is called the 'strong AI' hypothesis." [121] ^ Alan Turing made this point in 1950. [36] References
^ Krishna, Sri (9 February 2023). "What is artificial narrow intelligence (ANI)?". VentureBeat. Retrieved 1 March 2024. ANI is developed to perform a single task.
^ "OpenAI Charter". OpenAI. Retrieved 6 April 2023. Our mission is to ensure that artificial basic intelligence advantages all of mankind.
^ Heath, Alex (18 January 2024). "Mark Zuckerberg's new goal is creating artificial basic intelligence". The Verge. Retrieved 13 June 2024. Our vision is to construct AI that is much better than human-level at all of the human senses.
^ Baum, Seth D. (2020 ). A Study of Artificial General Intelligence Projects for Ethics, Risk, and Policy (PDF) (Report). Global Catastrophic Risk Institute. Retrieved 28 November 2024. 72 AGI R&D projects were recognized as being active in 2020.
^ a b c "AI timelines: What do specialists in artificial intelligence expect for the future?". Our World in Data. Retrieved 6 April 2023.
^ Metz, Cade (15 May 2023). "Some Researchers Say A.I. Is Already Here, Stirring Debate in Tech Circles". The New York City Times. Retrieved 18 May 2023.
^ "AI pioneer Geoffrey Hinton quits Google and alerts of threat ahead". The New York Times. 1 May 2023. Retrieved 2 May 2023. It is tough to see how you can prevent the bad actors from using it for bad things.
^ Bubeck, Sébastien; Chandrasekaran, Varun; Eldan, Ronen; Gehrke, Johannes; Horvitz, Eric (2023 ). "Sparks of Artificial General Intelligence: Early try outs GPT-4". arXiv preprint. arXiv:2303.12712. GPT-4 reveals triggers of AGI.
^ Butler, Octavia E. (1993 ). Parable of the Sower. Grand Central Publishing. ISBN 978-0-4466-7550-5. All that you touch you change. All that you alter changes you.
^ Vinge, Vernor (1992 ). A Fire Upon the Deep. Tor Books. ISBN 978-0-8125-1528-2. The Singularity is coming.
^ Morozov, Evgeny (30 June 2023). "The True Threat of Expert System". The New York City Times. The genuine danger is not AI itself however the way we deploy it.
^ "Impressed by synthetic intelligence? Experts say AGI is following, and it has 'existential' threats". ABC News. 23 March 2023. Retrieved 6 April 2023. AGI could pose existential risks to mankind.
^ Bostrom, Nick (2014 ). Superintelligence: Paths, Dangers, Strategies. Oxford University Press. ISBN 978-0-1996-7811-2. The first superintelligence will be the last invention that humankind needs to make.
^ Roose, Kevin (30 May 2023). "A.I. Poses 'Risk of Extinction,' Industry Leaders Warn". The New York Times. Mitigating the risk of termination from AI should be a worldwide priority.
^ "Statement on AI Risk". Center for AI Safety. Retrieved 1 March 2024. AI experts warn of danger of extinction from AI.
^ Mitchell, Melanie (30 May 2023). "Are AI's Doomsday Scenarios Worth Taking Seriously?". The New York Times. We are far from producing makers that can outthink us in basic methods.
^ LeCun, Yann (June 2023). "AGI does not provide an existential danger". Medium. There is no reason to fear AI as an existential danger.
^ Kurzweil 2005, p. 260.
^ a b Kurzweil, Ray (5 August 2005), "Long Live AI", Forbes, archived from the initial on 14 August 2005: Kurzweil explains strong AI as "device intelligence with the full series of human intelligence.".
^ "The Age of Artificial Intelligence: George John at TEDxLondonBusinessSchool 2013". Archived from the original on 26 February 2014. Retrieved 22 February 2014.
^ Newell & Simon 1976, This is the term they utilize for "human-level" intelligence in the physical sign system hypothesis.
^ "The Open University on Strong and Weak AI". Archived from the initial on 25 September 2009. Retrieved 8 October 2007.
^ "What is synthetic superintelligence (ASI)?|Definition from TechTarget". Enterprise AI. Retrieved 8 October 2023.
^ "Expert system is changing our world - it is on everyone to make sure that it goes well". Our World in Data. Retrieved 8 October 2023.
^ Dickson, Ben (16 November 2023). "Here is how far we are to achieving AGI, according to DeepMind". VentureBeat.
^ McCarthy, John (2007a). "Basic Questions". Stanford University. Archived from the initial on 26 October 2007. Retrieved 6 December 2007.
^ This list of smart qualities is based upon the subjects covered by significant AI textbooks, including: Russell & Norvig 2003, Luger & Stubblefield 2004, Poole, Mackworth & Goebel 1998 and Nilsson 1998.
^ Johnson 1987.
^ de Charms, R. (1968 ). Personal causation. New York: Academic Press.
^ a b Pfeifer, R. and Bongard J. C., How the body shapes the way we think: a new view of intelligence (The MIT Press, 2007). ISBN 0-2621-6239-3.
^ White, R. W. (1959 ). "Motivation reassessed: The concept of proficiency". Psychological Review. 66 (5 ): 297-333. doi:10.1037/ h0040934. PMID 13844397. S2CID 37385966.
^ White, R. W. (1959 ). "Motivation reassessed: The concept of proficiency". Psychological Review. 66 (5 ): 297-333. doi:10.1037/ h0040934. PMID 13844397. S2CID 37385966.
^ Muehlhauser, Luke (11 August 2013). "What is AGI?". Machine Intelligence Research Institute. Archived from the original on 25 April 2014. Retrieved 1 May 2014.
^ "What is Artificial General Intelligence (AGI)?|4 Tests For Ensuring Artificial General Intelligence". Talky Blog. 13 July 2019. Archived from the original on 17 July 2019. Retrieved 17 July 2019.
^ Kirk-Giannini, Cameron Domenico; Goldstein, Simon (16 October 2023). "AI is closer than ever to passing the Turing test for 'intelligence'. What occurs when it does?". The Conversation. Retrieved 22 September 2024.
^ a b Turing 1950.
^ Turing, Alan (1952 ). B. Jack Copeland (ed.). Can Automatic Calculating Machines Be Said To Think?. Oxford: Oxford University Press. pp. 487-506. ISBN 978-0-1982-5079-1.
^ "Eugene Goostman is a real kid - the Turing Test states so". The Guardian. 9 June 2014. ISSN 0261-3077. Retrieved 3 March 2024.
^ "Scientists contest whether computer 'Eugene Goostman' passed Turing test". BBC News. 9 June 2014. Retrieved 3 March 2024.
^ Jones, Cameron R.; Bergen, Benjamin K. (9 May 2024). "People can not distinguish GPT-4 from a human in a Turing test". arXiv:2405.08007 [cs.HC]
^ Varanasi, Lakshmi (21 March 2023). "AI designs like ChatGPT and wavedream.wiki GPT-4 are acing everything from the bar examination to AP Biology. Here's a list of hard exams both AI variations have actually passed". Business Insider. Retrieved 30 May 2023.
^ Naysmith, Caleb (7 February 2023). "6 Jobs Artificial Intelligence Is Already Replacing and How Investors Can Profit From It". Retrieved 30 May 2023.
^ Turk, Victoria (28 January 2015). "The Plan to Replace the Turing Test with a 'Turing Olympics'". Vice. Retrieved 3 March 2024.
^ Gopani, Avi (25 May 2022). "Turing Test is unreliable. The Winograd Schema is outdated. Coffee is the response". Analytics India Magazine. Retrieved 3 March 2024.
^ Bhaimiya, Sawdah (20 June 2023). "DeepMind's co-founder suggested evaluating an AI chatbot's capability to turn $100,000 into $1 million to measure human-like intelligence". Business Insider. Retrieved 3 March 2024.
^ Suleyman, Mustafa (14 July 2023). "Mustafa Suleyman: My new Turing test would see if AI can make $1 million". MIT Technology Review. Retrieved 3 March 2024.
^ Shapiro, Stuart C. (1992 ). "Expert System" (PDF). In Stuart C. Shapiro (ed.). Encyclopedia of Artificial Intelligence (Second ed.). New York: John Wiley. pp. 54-57. Archived (PDF) from the original on 1 February 2016. (Section 4 is on "AI-Complete Tasks".).
^ Yampolskiy, Roman V. (2012 ). Xin-She Yang (ed.). "Turing Test as a Defining Feature of AI-Completeness" (PDF). Artificial Intelligence, Evolutionary Computation and Metaheuristics (AIECM): 3-17. Archived (PDF) from the original on 22 May 2013.
^ "AI Index: State of AI in 13 Charts". Stanford University Human-Centered Artificial Intelligence. 15 April 2024. Retrieved 27 May 2024.
^ Crevier 1993, pp. 48-50.
^ Kaplan, Andreas (2022 ). "Artificial Intelligence, Business and Civilization - Our Fate Made in Machines". Archived from the original on 6 May 2022. Retrieved 12 March 2022.
^ Simon 1965, p. 96 estimated in Crevier 1993, p. 109.
^ "Scientist on the Set: An Interview with Marvin Minsky". Archived from the initial on 16 July 2012. Retrieved 5 April 2008.
^ Marvin Minsky to Darrach (1970 ), quoted in Crevier (1993, p. 109).
^ Lighthill 1973; Howe 1994.
^ a b NRC 1999, "Shift to Applied Research Increases Investment".
^ Crevier 1993, pp. 115-117; Russell & Norvig 2003, pp. 21-22.
^ Crevier 1993, p. 211, Russell & Norvig 2003, p. 24 and see also Feigenbaum & McCorduck 1983.
^ Crevier 1993, pp. 161-162, 197-203, 240; Russell & Norvig 2003, p. 25.
^ Crevier 1993, pp. 209-212.
^ McCarthy, John (2000 ). "Reply to Lighthill". Stanford University. Archived from the initial on 30 September 2008. Retrieved 29 September 2007.
^ Markoff, John (14 October 2005). "Behind Artificial Intelligence, a Squadron of Bright Real People". The New York City Times. Archived from the initial on 2 February 2023. Retrieved 18 February 2017. At its low point, some computer scientists and software engineers prevented the term expert system for worry of being seen as wild-eyed dreamers.
^ Russell & Norvig 2003, pp. 25-26
^ "Trends in the Emerging Tech Hype Cycle". Gartner Reports. Archived from the initial on 22 May 2019. Retrieved 7 May 2019.
^ a b Moravec 1988, p. 20
^ Harnad, S. (1990 ). "The Symbol Grounding Problem". Physica D. 42 (1-3): 335-346. arXiv: cs/9906002. Bibcode:1990 PhyD ... 42..335 H. doi:10.1016/ 0167-2789( 90 )90087-6. S2CID 3204300.
^ Gubrud 1997
^ Hutter, Marcus (2005 ). Universal Artificial Intelligence: Sequential Decisions Based on Algorithmic Probability. Texts in Theoretical Computer Science an EATCS Series. Springer. doi:10.1007/ b138233. ISBN 978-3-5402-6877-2. S2CID 33352850. Archived from the original on 19 July 2022. Retrieved 19 July 2022.
^ Legg, Shane (2008 ). Machine Super Intelligence (PDF) (Thesis). University of Lugano. Archived (PDF) from the original on 15 June 2022. Retrieved 19 July 2022.
^ Goertzel, Ben (2014 ). Artificial General Intelligence. Lecture Notes in Computer Science. Vol. 8598. Journal of Artificial General Intelligence. doi:10.1007/ 978-3-319-09274-4. ISBN 978-3-3190-9273-7. S2CID 8387410.
^ "Who created the term "AGI"?". goertzel.org. Archived from the initial on 28 December 2018. Retrieved 28 December 2018., by means of Life 3.0: 'The term "AGI" was promoted by ... Shane Legg, Mark Gubrud and Ben Goertzel'
^ Wang & Goertzel 2007
^ "First International Summer School in Artificial General Intelligence, Main summertime school: June 22 - July 3, 2009, OpenCog Lab: July 6-9, 2009". Archived from the initial on 28 September 2020. Retrieved 11 May 2020.
^ "Избираеми дисциплини 2009/2010 - пролетен триместър" [Elective courses 2009/2010 - spring trimester] Факултет по математика и информатика [Faculty of Mathematics and Informatics] (in Bulgarian). Archived from the initial on 26 July 2020. Retrieved 11 May 2020.
^ "Избираеми дисциплини 2010/2011 - зимен триместър" [Elective courses 2010/2011 - winter season trimester] Факултет по математика и информатика [Faculty of Mathematics and Informatics] (in Bulgarian). Archived from the original on 26 July 2020. Retrieved 11 May 2020.
^ Shevlin, Henry; Vold, Karina; Crosby, Matthew; Halina, Marta (4 October 2019). "The limitations of device intelligence: Despite progress in maker intelligence, artificial general intelligence is still a major obstacle". EMBO Reports. 20 (10 ): e49177. doi:10.15252/ embr.201949177. ISSN 1469-221X. PMC 6776890. PMID 31531926.
^ Bubeck, Sébastien; Chandrasekaran, Varun; Eldan, Ronen; Gehrke, Johannes; Horvitz, Eric; Kamar, Ece; Lee, Peter; Lee, Yin Tat; Li, Yuanzhi; Lundberg, Scott; Nori, Harsha; Palangi, Hamid; Ribeiro, Marco Tulio; Zhang, Yi (27 March 2023). "Sparks of Artificial General Intelligence: Early experiments with GPT-4". arXiv:2303.12712 [cs.CL]
^ "Microsoft Researchers Claim GPT-4 Is Showing "Sparks" of AGI". Futurism. 23 March 2023. Retrieved 13 December 2023.
^ Allen, Paul; Greaves, Mark (12 October 2011). "The Singularity Isn't Near". MIT Technology Review. Retrieved 17 September 2014.
^ Winfield, Alan. "Artificial intelligence will not become a Frankenstein's monster". The Guardian. Archived from the initial on 17 September 2014. Retrieved 17 September 2014.
^ Deane, George (2022 ). "Machines That Feel and Think: The Role of Affective Feelings and Mental Action in (Artificial) General Intelligence". Artificial Life. 28 (3 ): 289-309. doi:10.1162/ artl_a_00368. ISSN 1064-5462. PMID 35881678. S2CID 251069071.
^ a b c Clocksin 2003.
^ Fjelland, Ragnar (17 June 2020). "Why general synthetic intelligence will not be realized". Humanities and Social Sciences Communications. 7 (1 ): 1-9. doi:10.1057/ s41599-020-0494-4. hdl:11250/ 2726984. ISSN 2662-9992. S2CID 219710554.
^ McCarthy 2007b.
^ Khatchadourian, Raffi (23 November 2015). "The Doomsday Invention: higgledy-piggledy.xyz Will expert system bring us utopia or destruction?". The New Yorker. Archived from the initial on 28 January 2016. Retrieved 7 February 2016.
^ Müller, V. C., & Bostrom, N. (2016 ). Future development in artificial intelligence: A study of professional opinion. In Fundamental concerns of expert system (pp. 555-572). Springer, Cham.
^ Armstrong, Stuart, and Kaj Sotala. 2012. "How We're Predicting AI-or Failing To." In Beyond AI: Artificial Dreams, modified by Jan Romportl, Pavel Ircing, Eva Žáčková, Michal Polák and Radek Schuster, 52-75. Plzeň: University of West Bohemia
^ "Microsoft Now Claims GPT-4 Shows 'Sparks' of General Intelligence". 24 March 2023.
^ Shimek, Cary (6 July 2023). "AI Outperforms Humans in Creativity Test". Neuroscience News. Retrieved 20 October 2023.
^ Guzik, Erik E.; Byrge, Christian; Gilde, Christian (1 December 2023). "The creativity of devices: AI takes the Torrance Test". Journal of Creativity. 33 (3 ): 100065. doi:10.1016/ j.yjoc.2023.100065. ISSN 2713-3745. S2CID 261087185.
^ Arcas, Blaise Agüera y (10 October 2023). "Artificial General Intelligence Is Already Here". Noema.
^ Zia, Tehseen (8 January 2024). "Unveiling of Large Multimodal Models: asteroidsathome.net Shaping the Landscape of Language Models in 2024". Unite.ai. Retrieved 26 May 2024.
^ "Introducing OpenAI o1-preview". OpenAI. 12 September 2024.
^ Knight, Will. "OpenAI Announces a Brand-new AI Model, Code-Named Strawberry, That Solves Difficult Problems Step by Step". Wired. ISSN 1059-1028. Retrieved 17 September 2024.
^ "OpenAI Employee Claims AGI Has Been Achieved". Orbital Today. 13 December 2024. Retrieved 27 December 2024.
^ "AI Index: State of AI in 13 Charts". hai.stanford.edu. 15 April 2024. Retrieved 7 June 2024.
^ "Next-Gen AI: OpenAI and Meta's Leap Towards Reasoning Machines". Unite.ai. 19 April 2024. Retrieved 7 June 2024.
^ James, Alex P. (2022 ). "The Why, What, and How of Artificial General Intelligence Chip Development". IEEE Transactions on Cognitive and Developmental Systems. 14 (2 ): 333-347. arXiv:2012.06338. doi:10.1109/ TCDS.20