![](https://substackcdn.com/image/fetch/f_auto,q_auto:good,fl_progressive:steep/https%3A%2F%2Fsubstack-post-media.s3.amazonaws.com%2Fpublic%2Fimages%2F5faaea99-d4af-4091-a03f-71f03e64c071_2905x3701.jpeg)
Artificial basic intelligence (AGI) is a kind of synthetic intelligence (AI) that matches or exceeds human cognitive abilities throughout a wide variety of cognitive tasks. This contrasts with narrow AI, which is restricted to specific tasks. [1] Artificial superintelligence (ASI), on the other hand, describes AGI that considerably exceeds human cognitive abilities. AGI is considered among the definitions of strong AI.
Creating AGI is a primary goal of AI research and of business such as OpenAI [2] and Meta. [3] A 2020 survey determined 72 active AGI research study and development projects across 37 nations. [4]
The timeline for accomplishing AGI remains a topic of ongoing argument amongst researchers and specialists. As of 2023, some argue that it might be possible in years or years; others preserve it might take a century or longer; a minority think it may never be attained; and another minority claims that it is already here. [5] [6] Notable AI scientist Geoffrey Hinton has actually expressed concerns about the quick development towards AGI, recommending it might be achieved earlier than lots of anticipate. [7]
There is debate on the precise definition of AGI and relating to whether modern big language models (LLMs) such as GPT-4 are early forms of AGI. [8] AGI is a typical topic in sci-fi and futures research studies. [9] [10]
Contention exists over whether AGI represents an existential risk. [11] [12] [13] Many professionals on AI have mentioned that reducing the danger of human termination positioned by AGI must be an international concern. [14] [15] Others find the advancement of AGI to be too remote to present such a danger. [16] [17]
Terminology
![](https://omghcontent.affino.com/AcuCustom/Sitename/DAM/235/SINGLE_USE_AI_BING.jpg)
AGI is also known as strong AI, [18] [19] full AI, [20] human-level AI, [5] human-level smart AI, or general smart action. [21]
Some scholastic sources schedule the term "strong AI" for computer system programs that experience life or consciousness. [a] In contrast, weak AI (or narrow AI) has the ability to solve one particular problem however lacks basic cognitive abilities. [22] [19] Some scholastic sources use "weak AI" to refer more broadly to any programs that neither experience awareness nor have a mind in the exact same sense as humans. [a]
Related ideas consist of artificial superintelligence and transformative AI. An artificial superintelligence (ASI) is a theoretical kind of AGI that is far more usually intelligent than humans, [23] while the idea of transformative AI connects to AI having a large effect on society, for instance, comparable to the agricultural or industrial revolution. [24]
A structure for categorizing AGI in levels was proposed in 2023 by Google DeepMind scientists. They define 5 levels of AGI: emerging, skilled, professional, virtuoso, and superhuman. For instance, a skilled AGI is specified as an AI that exceeds 50% of competent grownups in a large range of non-physical tasks, and a superhuman AGI (i.e. a synthetic superintelligence) is similarly defined however with a threshold of 100%. They think about big language designs like ChatGPT or LLaMA 2 to be circumstances of emerging AGI. [25]
Characteristics
Various popular meanings of intelligence have been proposed. Among the leading propositions is the Turing test. However, there are other well-known definitions, and some researchers disagree with the more popular methods. [b]
Intelligence qualities
![](https://media.npr.org/assets/img/2023/05/24/gettyimages-1358149692-39527b1e42cc64b90835222f8aa203956538fe0e.jpg)
Researchers generally hold that intelligence is required to do all of the following: [27]
factor, use method, resolve puzzles, and make judgments under uncertainty
represent knowledge, including sound judgment knowledge
plan
learn
- communicate in natural language
- if needed, incorporate these skills in conclusion of any given objective
Many interdisciplinary approaches (e.g. cognitive science, computational intelligence, and decision making) think about additional qualities such as creativity (the capability to form unique mental images and ideas) [28] and autonomy. [29]
Computer-based systems that show numerous of these capabilities exist (e.g. see computational imagination, automated thinking, choice support group, robot, evolutionary calculation, smart representative). There is debate about whether modern-day AI systems possess them to an adequate degree.
Physical characteristics
Other abilities are thought about desirable in smart systems, as they might affect intelligence or aid in its expression. These consist of: [30]
- the capability to sense (e.g. see, hear, and so on), and
- the ability to act (e.g. relocation and manipulate things, modification place to explore, and so on).
This includes the capability to detect and react to danger. [31]
Although the ability to sense (e.g. see, hear, etc) and the capability to act (e.g. relocation and control things, modification place to explore, etc) can be preferable for some smart systems, [30] these physical capabilities are not strictly needed for an entity to certify as AGI-particularly under the thesis that large language designs (LLMs) may already be or become AGI. Even from a less optimistic viewpoint on LLMs, there is no company requirement for an AGI to have a human-like type; being a silicon-based computational system suffices, provided it can process input (language) from the external world in location of human senses. This analysis lines up with the understanding that AGI has actually never ever been proscribed a specific physical personification and therefore does not demand a capability for mobility or traditional "eyes and ears". [32]
Tests for human-level AGI
Several tests suggested to confirm human-level AGI have actually been considered, consisting of: [33] [34]
The idea of the test is that the maker has to try and systemcheck-wiki.de pretend to be a man, by answering questions put to it, and it will just pass if the pretence is fairly convincing. A considerable portion of a jury, forum.pinoo.com.tr who should not be professional about makers, need to be taken in by the pretence. [37]
AI-complete issues
A problem is informally called "AI-complete" or "AI-hard" if it is thought that in order to solve it, one would need to carry out AGI, due to the fact that the solution is beyond the abilities of a purpose-specific algorithm. [47]
There are numerous issues that have actually been conjectured to need general intelligence to solve along with humans. Examples include computer vision, natural language understanding, and handling unexpected scenarios while solving any real-world problem. [48] Even a specific job like translation needs a machine to read and compose in both languages, follow the author's argument (factor), understand the context (understanding), and consistently recreate the author's initial intent (social intelligence). All of these problems need to be fixed concurrently in order to reach human-level device performance.
However, a lot of these tasks can now be performed by modern-day large language designs. According to Stanford University's 2024 AI index, AI has actually reached human-level efficiency on lots of standards for checking out understanding and visual thinking. [49]
History
Classical AI
Modern AI research started in the mid-1950s. [50] The very first generation of AI scientists were convinced that artificial general intelligence was possible which it would exist in simply a couple of decades. [51] AI pioneer Herbert A. Simon composed in 1965: "machines will be capable, within twenty years, of doing any work a man can do." [52]
Their forecasts were the motivation for Stanley Kubrick and Arthur C. Clarke's character HAL 9000, who embodied what AI scientists believed they could create by the year 2001. AI pioneer Marvin Minsky was a specialist [53] on the project of making HAL 9000 as practical as possible according to the consensus forecasts of the time. He stated in 1967, "Within a generation ... the problem of developing 'synthetic intelligence' will substantially be resolved". [54]
Several classical AI tasks, such as Doug Lenat's Cyc project (that started in 1984), and Allen Newell's Soar project, were directed at AGI.
However, in the early 1970s, it became apparent that researchers had grossly undervalued the difficulty of the job. Funding agencies ended up being doubtful of AGI and put researchers under increasing pressure to produce useful "used AI". [c] In the early 1980s, Japan's Fifth Generation Computer Project revived interest in AGI, setting out a ten-year timeline that included AGI goals like "continue a casual conversation". [58] In action to this and the success of specialist systems, both market and federal government pumped cash into the field. [56] [59] However, confidence in AI marvelously collapsed in the late 1980s, and the objectives of the Fifth Generation Computer Project were never fulfilled. [60] For the 2nd time in twenty years, AI scientists who predicted the imminent accomplishment of AGI had actually been misinterpreted. By the 1990s, gratisafhalen.be AI researchers had a credibility for making vain guarantees. They ended up being hesitant to make forecasts at all [d] and avoided mention of "human level" artificial intelligence for fear of being labeled "wild-eyed dreamer [s]. [62]
Narrow AI research
In the 1990s and early 21st century, mainstream AI accomplished industrial success and scholastic respectability by focusing on specific sub-problems where AI can produce proven outcomes and industrial applications, such as speech recognition and recommendation algorithms. [63] These "applied AI" systems are now used thoroughly throughout the innovation industry, and research in this vein is heavily funded in both academia and industry. Since 2018 [upgrade], advancement in this field was considered an emerging trend, and a mature stage was expected to be reached in more than 10 years. [64]
At the turn of the century, lots of mainstream AI scientists [65] hoped that strong AI might be developed by integrating programs that resolve numerous sub-problems. Hans Moravec composed in 1988:
I am positive that this bottom-up path to synthetic intelligence will one day satisfy the standard top-down path majority method, ready to supply the real-world skills and the commonsense knowledge that has been so frustratingly elusive in reasoning programs. Fully smart makers will result when the metaphorical golden spike is driven joining the two efforts. [65]
However, even at the time, this was challenged. For instance, Stevan Harnad of Princeton University concluded his 1990 paper on the sign grounding hypothesis by stating:
The expectation has actually frequently been voiced that "top-down" (symbolic) approaches to modeling cognition will somehow meet "bottom-up" (sensory) approaches somewhere in between. If the grounding considerations in this paper are legitimate, then this expectation is hopelessly modular and there is actually just one feasible route from sense to signs: from the ground up. A free-floating symbolic level like the software level of a computer will never be reached by this path (or vice versa) - nor is it clear why we ought to even try to reach such a level, since it appears arriving would simply total up to uprooting our signs from their intrinsic significances (therefore simply decreasing ourselves to the functional equivalent of a programmable computer system). [66]
Modern artificial basic intelligence research
The term "synthetic general intelligence" was utilized as early as 1997, by Mark Gubrud [67] in a conversation of the ramifications of totally automated military production and operations. A mathematical formalism of AGI was proposed by Marcus Hutter in 2000. Named AIXI, the proposed AGI agent increases "the capability to please goals in a wide variety of environments". [68] This kind of AGI, defined by the capability to increase a mathematical meaning of intelligence instead of display human-like behaviour, [69] was also called universal synthetic intelligence. [70]
The term AGI was re-introduced and promoted by Shane Legg and Ben Goertzel around 2002. [71] AGI research study activity in 2006 was explained by Pei Wang and Ben Goertzel [72] as "producing publications and preliminary results". The first summer season school in AGI was organized in Xiamen, China in 2009 [73] by the Xiamen university's Artificial Brain Laboratory and OpenCog. The very first university course was given up 2010 [74] and 2011 [75] at Plovdiv University, Bulgaria by Todor Arnaudov. MIT provided a course on AGI in 2018, organized by Lex Fridman and including a variety of guest speakers.
As of 2023 [upgrade], a small number of computer system scientists are active in AGI research, and lots of contribute to a series of AGI conferences. However, increasingly more scientists are interested in open-ended learning, [76] [77] which is the idea of allowing AI to continuously discover and innovate like humans do.
Feasibility
As of 2023, the advancement and prospective achievement of AGI remains a topic of intense dispute within the AI neighborhood. While conventional agreement held that AGI was a distant goal, current developments have led some researchers and market figures to claim that early types of AGI might already exist. [78] AI pioneer Herbert A. Simon speculated in 1965 that "machines will be capable, within twenty years, of doing any work a guy can do". This prediction stopped working to come real. Microsoft co-founder Paul Allen thought that such intelligence is not likely in the 21st century since it would require "unforeseeable and essentially unforeseeable advancements" and a "scientifically deep understanding of cognition". [79] Writing in The Guardian, roboticist Alan Winfield claimed the gulf in between contemporary computing and human-level artificial intelligence is as wide as the gulf in between current area flight and practical faster-than-light spaceflight. [80]
A more obstacle is the lack of clarity in specifying what intelligence involves. Does it need awareness? Must it show the capability to set objectives in addition to pursue them? Is it purely a matter of scale such that if design sizes increase adequately, intelligence will emerge? Are centers such as planning, reasoning, and causal understanding required? Does intelligence require clearly duplicating the brain and its particular faculties? Does it need feelings? [81]
Most AI researchers believe strong AI can be attained in the future, but some thinkers, like Hubert Dreyfus and Roger Penrose, reject the possibility of attaining strong AI. [82] [83] John McCarthy is amongst those who believe human-level AI will be achieved, but that today level of development is such that a date can not properly be anticipated. [84] AI professionals' views on the feasibility of AGI wax and wane. Four polls performed in 2012 and 2013 suggested that the typical price quote amongst specialists for when they would be 50% confident AGI would get here was 2040 to 2050, depending on the poll, with the mean being 2081. Of the professionals, 16.5% answered with "never" when asked the very same concern but with a 90% confidence rather. [85] [86] Further current AGI progress considerations can be found above Tests for confirming human-level AGI.
A report by Stuart Armstrong and Kaj Sotala of the Machine Intelligence Research Institute found that "over [a] 60-year amount of time there is a strong bias towards forecasting the arrival of human-level AI as in between 15 and 25 years from the time the prediction was made". They analyzed 95 predictions made in between 1950 and 2012 on when human-level AI will come about. [87]
In 2023, Microsoft scientists released an in-depth assessment of GPT-4. They concluded: "Given the breadth and depth of GPT-4's abilities, we think that it could reasonably be deemed an early (yet still insufficient) version of an artificial general intelligence (AGI) system." [88] Another research study in 2023 reported that GPT-4 outperforms 99% of people on the Torrance tests of creativity. [89] [90]
Blaise Agüera y Arcas and Peter Norvig wrote in 2023 that a substantial level of basic intelligence has currently been accomplished with frontier designs. They wrote that unwillingness to this view originates from four main reasons: a "healthy uncertainty about metrics for AGI", an "ideological commitment to alternative AI theories or methods", a "commitment to human (or biological) exceptionalism", or a "issue about the economic ramifications of AGI". [91]
2023 also marked the introduction of large multimodal models (large language designs capable of processing or generating several techniques such as text, audio, and images). [92]
In 2024, OpenAI released o1-preview, the first of a series of models that "spend more time thinking before they respond". According to Mira Murati, this ability to think before responding represents a new, extra paradigm. It enhances design outputs by spending more computing power when generating the answer, whereas the design scaling paradigm enhances outputs by increasing the design size, training data and training calculate power. [93] [94]
An OpenAI staff member, Vahid Kazemi, declared in 2024 that the business had achieved AGI, stating, "In my viewpoint, we have actually currently achieved AGI and it's even more clear with O1." Kazemi clarified that while the AI is not yet "better than any human at any task", it is "better than the majority of humans at many jobs." He likewise resolved criticisms that big language models (LLMs) simply follow predefined patterns, comparing their knowing process to the clinical approach of observing, hypothesizing, and confirming. These declarations have actually stimulated argument, as they count on a broad and non-traditional definition of AGI-traditionally comprehended as AI that matches human intelligence throughout all domains. Critics argue that, while OpenAI's designs show exceptional flexibility, they might not fully satisfy this standard. Notably, Kazemi's remarks came quickly after OpenAI removed "AGI" from the terms of its partnership with Microsoft, prompting speculation about the company's tactical intentions. [95]
Timescales
Progress in artificial intelligence has actually historically gone through periods of fast progress separated by durations when development appeared to stop. [82] Ending each hiatus were fundamental advances in hardware, software or both to produce space for more development. [82] [98] [99] For example, the computer system hardware available in the twentieth century was not enough to execute deep learning, which requires big numbers of GPU-enabled CPUs. [100]
In the introduction to his 2006 book, [101] Goertzel states that price quotes of the time needed before a truly flexible AGI is constructed vary from 10 years to over a century. As of 2007 [update], the agreement in the AGI research study community seemed to be that the timeline discussed by Ray Kurzweil in 2005 in The Singularity is Near [102] (i.e. between 2015 and 2045) was plausible. [103] Mainstream AI scientists have provided a vast array of viewpoints on whether development will be this fast. A 2012 meta-analysis of 95 such opinions found a predisposition towards forecasting that the start of AGI would take place within 16-26 years for modern-day and historic forecasts alike. That paper has actually been slammed for how it classified opinions as expert or non-expert. [104]
In 2012, Alex Krizhevsky, Ilya Sutskever, and Geoffrey Hinton developed a neural network called AlexNet, which won the ImageNet competitors with a top-5 test mistake rate of 15.3%, significantly better than the second-best entry's rate of 26.3% (the conventional approach utilized a weighted sum of ratings from different pre-defined classifiers). [105] AlexNet was related to as the preliminary ground-breaker of the present deep knowing wave. [105]
In 2017, researchers Feng Liu, Yong Shi, and Ying Liu carried out intelligence tests on publicly readily available and easily accessible weak AI such as Google AI, Apple's Siri, and others. At the maximum, these AIs reached an IQ value of about 47, which corresponds approximately to a six-year-old kid in very first grade. An adult comes to about 100 on average. Similar tests were performed in 2014, with the IQ rating reaching an optimum worth of 27. [106] [107]
In 2020, OpenAI established GPT-3, a language model capable of carrying out lots of varied tasks without specific training. According to Gary Grossman in a VentureBeat short article, while there is agreement that GPT-3 is not an example of AGI, it is considered by some to be too advanced to be classified as a narrow AI system. [108]
In the same year, Jason Rohrer used his GPT-3 account to establish a chatbot, and provided a chatbot-developing platform called "Project December". OpenAI requested modifications to the chatbot to comply with their security standards; Rohrer detached Project December from the GPT-3 API. [109]
In 2022, DeepMind established Gato, a "general-purpose" system efficient in performing more than 600 different tasks. [110]
In 2023, Microsoft Research published a research study on an early variation of OpenAI's GPT-4, competing that it exhibited more basic intelligence than previous AI models and demonstrated human-level performance in tasks covering several domains, such as mathematics, coding, and law. This research study stimulated a debate on whether GPT-4 might be thought about an early, insufficient variation of synthetic general intelligence, emphasizing the need for more expedition and examination of such systems. [111]
In 2023, the AI researcher Geoffrey Hinton mentioned that: [112]
The idea that this stuff might actually get smarter than people - a couple of individuals thought that, [...] But a lot of people believed it was way off. And I thought it was method off. I believed it was 30 to 50 years or perhaps longer away. Obviously, I no longer believe that.
In May 2023, Demis Hassabis likewise stated that "The progress in the last couple of years has been quite amazing", and that he sees no reason why it would slow down, expecting AGI within a decade or perhaps a few years. [113] In March 2024, Nvidia's CEO, Jensen Huang, specified his expectation that within 5 years, AI would be capable of passing any test at least in addition to human beings. [114] In June 2024, the AI scientist Leopold Aschenbrenner, a former OpenAI employee, estimated AGI by 2027 to be "strikingly possible". [115]
Whole brain emulation
While the development of transformer models like in ChatGPT is thought about the most promising course to AGI, [116] [117] entire brain emulation can work as an alternative method. With entire brain simulation, a brain design is built by scanning and mapping a biological brain in detail, and after that copying and mimicing it on a computer system or another computational gadget. The simulation model need to be adequately faithful to the initial, so that it behaves in almost the same method as the initial brain. [118] Whole brain emulation is a kind of brain simulation that is discussed in computational neuroscience and neuroinformatics, and for medical research study functions. It has actually been talked about in expert system research study [103] as a technique to strong AI. Neuroimaging technologies that could deliver the essential detailed understanding are enhancing rapidly, and futurist Ray Kurzweil in the book The Singularity Is Near [102] predicts that a map of adequate quality will become readily available on a comparable timescale to the computing power needed to emulate it.
Early estimates
For low-level brain simulation, an extremely effective cluster of computers or GPUs would be needed, provided the enormous quantity of synapses within the human brain. Each of the 1011 (one hundred billion) nerve cells has on average 7,000 synaptic connections (synapses) to other nerve cells. The brain of a three-year-old child has about 1015 synapses (1 quadrillion). This number declines with age, stabilizing by the adult years. Estimates differ for an adult, ranging from 1014 to 5 × 1014 synapses (100 to 500 trillion). [120] A price quote of the brain's processing power, based upon a simple switch model for neuron activity, is around 1014 (100 trillion) synaptic updates per second (SUPS). [121]
In 1997, Kurzweil took a look at different price quotes for the hardware required to equal the human brain and embraced a figure of 1016 calculations per second (cps). [e] (For contrast, if a "computation" was equivalent to one "floating-point operation" - a step used to rate present supercomputers - then 1016 "computations" would be equivalent to 10 petaFLOPS, achieved in 2011, while 1018 was achieved in 2022.) He utilized this figure to predict the essential hardware would be offered sometime in between 2015 and 2025, if the exponential growth in computer system power at the time of writing continued.
Current research
The Human Brain Project, an EU-funded effort active from 2013 to 2023, has actually established an especially comprehensive and openly accessible atlas of the human brain. [124] In 2023, researchers from Duke University carried out a high-resolution scan of a mouse brain.
Criticisms of simulation-based approaches
The artificial nerve cell design presumed by Kurzweil and utilized in many current synthetic neural network applications is simple compared to biological nerve cells. A brain simulation would likely have to catch the in-depth cellular behaviour of biological nerve cells, currently understood just in broad outline. The overhead introduced by full modeling of the biological, chemical, and physical information of neural behaviour (especially on a molecular scale) would need computational powers a number of orders of magnitude bigger than Kurzweil's price quote. In addition, the quotes do not account for glial cells, which are understood to contribute in cognitive processes. [125]
A basic criticism of the simulated brain technique stems from embodied cognition theory which asserts that human embodiment is an essential aspect of human intelligence and is required to ground meaning. [126] [127] If this theory is proper, any totally practical brain design will require to incorporate more than just the neurons (e.g., a robotic body). Goertzel [103] proposes virtual embodiment (like in metaverses like Second Life) as an option, however it is unknown whether this would be sufficient.
Philosophical perspective
"Strong AI" as specified in philosophy
In 1980, philosopher John Searle created the term "strong AI" as part of his Chinese space argument. [128] He proposed a difference in between 2 hypotheses about expert system: [f]
Strong AI hypothesis: An expert system system can have "a mind" and "awareness".
Weak AI hypothesis: An expert system system can (only) act like it believes and has a mind and consciousness.
The first one he called "strong" due to the fact that it makes a stronger statement: it presumes something unique has occurred to the maker that surpasses those abilities that we can check. The behaviour of a "weak AI" machine would be precisely identical to a "strong AI" maker, but the latter would also have subjective mindful experience. This usage is likewise common in scholastic AI research and textbooks. [129]
In contrast to Searle and traditional AI, some futurists such as Ray Kurzweil use the term "strong AI" to suggest "human level artificial basic intelligence". [102] This is not the exact same as Searle's strong AI, unless it is assumed that consciousness is required for human-level AGI. Academic philosophers such as Searle do not believe that is the case, and to most artificial intelligence scientists the question is out-of-scope. [130]
Mainstream AI is most thinking about how a program behaves. [131] According to Russell and Norvig, "as long as the program works, they don't care if you call it real or a simulation." [130] If the program can act as if it has a mind, then there is no requirement to understand if it actually has mind - undoubtedly, there would be no method to tell. For AI research, Searle's "weak AI hypothesis" is comparable to the statement "synthetic general intelligence is possible". Thus, according to Russell and Norvig, "most AI researchers take the weak AI hypothesis for approved, and don't care about the strong AI hypothesis." [130] Thus, for academic AI research, "Strong AI" and "AGI" are two different things.
Consciousness
Consciousness can have various meanings, and some aspects play significant functions in sci-fi and the ethics of expert system:
Sentience (or "phenomenal awareness"): The capability to "feel" understandings or emotions subjectively, rather than the ability to factor about understandings. Some philosophers, such as David Chalmers, utilize the term "awareness" to refer exclusively to extraordinary consciousness, which is roughly equivalent to life. [132] Determining why and how subjective experience occurs is called the tough problem of awareness. [133] Thomas Nagel discussed in 1974 that it "seems like" something to be mindful. If we are not mindful, then it doesn't feel like anything. Nagel utilizes the example of a bat: we can sensibly ask "what does it seem like to be a bat?" However, we are not likely to ask "what does it seem like to be a toaster?" Nagel concludes that a bat appears to be mindful (i.e., has consciousness) but a toaster does not. [134] In 2022, a Google engineer declared that the company's AI chatbot, LaMDA, had actually accomplished sentience, though this claim was widely contested by other professionals. [135]
Self-awareness: To have conscious awareness of oneself as a separate person, specifically to be knowingly conscious of one's own ideas. This is opposed to merely being the "subject of one's believed"-an operating system or debugger has the ability to be "familiar with itself" (that is, to represent itself in the exact same method it represents everything else)-however this is not what people typically mean when they utilize the term "self-awareness". [g]
These qualities have a moral dimension. AI sentience would generate concerns of welfare and legal security, similarly to animals. [136] Other aspects of awareness associated to cognitive abilities are likewise appropriate to the concept of AI rights. [137] Determining how to incorporate innovative AI with existing legal and social frameworks is an emerging problem. [138]
Benefits
AGI could have a wide array of applications. If oriented towards such goals, AGI could help alleviate various issues worldwide such as hunger, poverty and health problems. [139]
AGI could enhance productivity and effectiveness in many tasks. For example, in public health, AGI might accelerate medical research study, notably against cancer. [140] It could look after the senior, [141] and equalize access to rapid, top quality medical diagnostics. It could use enjoyable, cheap and customized education. [141] The need to work to subsist could become obsolete if the wealth produced is appropriately redistributed. [141] [142] This likewise raises the question of the place of human beings in a drastically automated society.
AGI could also help to make rational decisions, and to prepare for and prevent catastrophes. It could likewise assist to gain the benefits of potentially catastrophic technologies such as nanotechnology or environment engineering, while avoiding the associated dangers. [143] If an AGI's main goal is to avoid existential disasters such as human termination (which might be tough if the Vulnerable World Hypothesis ends up being real), [144] it could take procedures to dramatically reduce the threats [143] while reducing the effect of these procedures on our lifestyle.
Risks
Existential dangers
AGI might represent multiple kinds of existential risk, which are risks that threaten "the premature extinction of Earth-originating smart life or the long-term and drastic destruction of its capacity for preferable future development". [145] The danger of human extinction from AGI has been the subject of numerous debates, however there is also the possibility that the development of AGI would result in a completely flawed future. Notably, it might be used to spread and preserve the set of values of whoever establishes it. If humanity still has moral blind spots similar to slavery in the past, AGI may irreversibly entrench it, avoiding moral development. [146] Furthermore, AGI could help with mass surveillance and indoctrination, which might be used to produce a steady repressive worldwide totalitarian routine. [147] [148] There is also a threat for the makers themselves. If makers that are sentient or otherwise deserving of ethical factor to consider are mass produced in the future, participating in a civilizational path that indefinitely overlooks their well-being and interests could be an existential catastrophe. [149] [150] Considering just how much AGI could enhance humankind's future and help in reducing other existential threats, Toby Ord calls these existential risks "an argument for proceeding with due caution", not for "deserting AI". [147]
Risk of loss of control and human extinction
The thesis that AI postures an existential risk for human beings, which this danger needs more attention, is controversial however has actually been endorsed in 2023 by lots of public figures, AI scientists and CEOs of AI business such as Elon Musk, Bill Gates, Geoffrey Hinton, Yoshua Bengio, Demis Hassabis and Sam Altman. [151] [152]
In 2014, Stephen Hawking slammed extensive indifference:
So, facing possible futures of enormous benefits and threats, the professionals are definitely doing everything possible to ensure the best result, right? Wrong. If a remarkable alien civilisation sent us a message stating, 'We'll arrive in a couple of decades,' would we simply reply, 'OK, call us when you get here-we'll leave the lights on?' Probably not-but this is more or less what is occurring with AI. [153]
The potential fate of mankind has actually often been compared to the fate of gorillas threatened by human activities. The comparison specifies that greater intelligence enabled humankind to control gorillas, which are now vulnerable in manner ins which they might not have actually prepared for. As an outcome, the gorilla has actually become an endangered types, not out of malice, but simply as a security damage from human activities. [154]
The skeptic Yann LeCun considers that AGIs will have no desire to control humanity which we must beware not to anthropomorphize them and analyze their intents as we would for human beings. He stated that individuals won't be "smart adequate to design super-intelligent makers, yet extremely stupid to the point of giving it moronic objectives without any safeguards". [155] On the other side, the idea of critical convergence recommends that practically whatever their goals, intelligent agents will have factors to try to survive and get more power as intermediary steps to accomplishing these objectives. Which this does not require having feelings. [156]
Many scholars who are worried about existential threat supporter for more research study into resolving the "control issue" to address the concern: what types of safeguards, algorithms, or architectures can programmers carry out to increase the likelihood that their recursively-improving AI would continue to behave in a friendly, rather than harmful, way after it reaches superintelligence? [157] [158] Solving the control problem is made complex by the AI arms race (which could lead to a race to the bottom of safety precautions in order to launch products before competitors), [159] and the use of AI in weapon systems. [160]
The thesis that AI can present existential risk likewise has detractors. Skeptics typically say that AGI is unlikely in the short-term, or that concerns about AGI sidetrack from other concerns connected to present AI. [161] Former Google scams czar Shuman Ghosemajumder thinks about that for lots of people beyond the technology industry, existing chatbots and LLMs are already viewed as though they were AGI, causing further misunderstanding and worry. [162]
Skeptics in some cases charge that the thesis is crypto-religious, with an unreasonable belief in the possibility of superintelligence replacing an illogical belief in a supreme God. [163] Some researchers believe that the communication projects on AI existential threat by specific AI groups (such as OpenAI, Anthropic, DeepMind, and Conjecture) might be an at attempt at regulatory capture and to inflate interest in their products. [164] [165]
In 2023, the CEOs of Google DeepMind, OpenAI and Anthropic, along with other market leaders and scientists, released a joint statement asserting that "Mitigating the danger of extinction from AI need to be a worldwide concern together with other societal-scale risks such as pandemics and nuclear war." [152]
Mass joblessness
Researchers from OpenAI estimated that "80% of the U.S. workforce could have at least 10% of their work jobs affected by the introduction of LLMs, while around 19% of workers may see at least 50% of their jobs affected". [166] [167] They think about office workers to be the most exposed, for instance mathematicians, accountants or web designers. [167] AGI might have a much better autonomy, capability to make decisions, to user interface with other computer system tools, however also to control robotized bodies.
According to Stephen Hawking, the outcome of automation on the lifestyle will depend on how the wealth will be rearranged: [142]
Everyone can delight in a life of luxurious leisure if the machine-produced wealth is shared, or the majority of individuals can end up badly bad if the machine-owners successfully lobby versus wealth redistribution. So far, the pattern appears to be towards the 2nd alternative, with technology driving ever-increasing inequality
Elon Musk thinks about that the automation of society will need federal governments to adopt a universal basic earnings. [168]
See likewise
Artificial brain - Software and hardware with cognitive abilities comparable to those of the animal or human brain
AI impact
AI security - Research location on making AI safe and helpful
AI alignment - AI conformance to the desired goal
A.I. Rising - 2018 movie directed by Lazar Bodroža
Artificial intelligence
Automated artificial intelligence - Process of automating the application of artificial intelligence
BRAIN Initiative - Collaborative public-private research initiative revealed by the Obama administration
China Brain Project
Future of Humanity Institute - Defunct Oxford interdisciplinary research centre
General video game playing - Ability of artificial intelligence to play different video games
Generative expert system - AI system capable of generating content in response to prompts
Human Brain Project - Scientific research job
Intelligence amplification - Use of info innovation to enhance human intelligence (IA).
Machine ethics - Moral behaviours of manufactured makers.
Moravec's paradox.
Multi-task knowing - Solving numerous maker finding out jobs at the exact same time.
Neural scaling law - Statistical law in artificial intelligence.
Outline of expert system - Overview of and topical guide to expert system.
Transhumanism - Philosophical movement.
Synthetic intelligence - Alternate term for or kind of artificial intelligence.
Transfer learning - Machine learning method.
Loebner Prize - Annual AI competitors.
Hardware for synthetic intelligence - Hardware specifically designed and enhanced for expert system.
Weak artificial intelligence - Form of expert system.
Notes
^ a b See below for the origin of the term "strong AI", and see the scholastic meaning of "strong AI" and weak AI in the article Chinese room.
^ AI creator John McCarthy composes: "we can not yet identify in general what type of computational treatments we desire to call intelligent. " [26] (For a discussion of some meanings of intelligence used by artificial intelligence scientists, see philosophy of artificial intelligence.).
^ The Lighthill report particularly slammed AI's "grandiose objectives" and led the taking apart of AI research study in England. [55] In the U.S., DARPA ended up being identified to money just "mission-oriented direct research study, rather than standard undirected research". [56] [57] ^ As AI founder John McCarthy writes "it would be an excellent relief to the rest of the employees in AI if the creators of new general formalisms would reveal their hopes in a more secured type than has actually often held true." [61] ^ In "Mind Children" [122] 1015 cps is used. More recently, in 1997, [123] Moravec argued for 108 MIPS which would roughly correspond to 1014 cps. Moravec talks in regards to MIPS, not "cps", which is a non-standard term Kurzweil introduced.
^ As specified in a basic AI textbook: "The assertion that makers could possibly act smartly (or, maybe much better, act as if they were smart) is called the 'weak AI' hypothesis by thinkers, and the assertion that devices that do so are really believing (instead of imitating thinking) is called the 'strong AI' hypothesis." [121] ^ Alan Turing made this point in 1950. [36] References
^ Krishna, Sri (9 February 2023). "What is synthetic narrow intelligence (ANI)?". VentureBeat. Retrieved 1 March 2024. ANI is developed to perform a single task.
^ "OpenAI Charter". OpenAI. Retrieved 6 April 2023. Our objective is to ensure that synthetic basic intelligence advantages all of humankind.
^ Heath, Alex (18 January 2024). "Mark Zuckerberg's brand-new goal is developing artificial basic intelligence". The Verge. Retrieved 13 June 2024. Our vision is to build AI that is better than human-level at all of the human senses.
^ Baum, Seth D. (2020 ). A Study of Artificial General Intelligence Projects for Ethics, Risk, and Policy (PDF) (Report). Global Catastrophic Risk Institute. Retrieved 28 November 2024. 72 AGI R&D tasks were recognized as being active in 2020.
^ a b c "AI timelines: What do specialists in expert system expect for the future?". Our World in Data. Retrieved 6 April 2023.
^ Metz, Cade (15 May 2023). "Some Researchers Say A.I. Is Already Here, Stirring Debate in Tech Circles". The New York Times. Retrieved 18 May 2023.
^ "AI leader Geoffrey Hinton gives up Google and alerts of risk ahead". The New York City Times. 1 May 2023. Retrieved 2 May 2023. It is tough to see how you can avoid the bad stars from utilizing it for bad things.
^ Bubeck, Sébastien; Chandrasekaran, Varun; Eldan, Ronen; Gehrke, Johannes; Horvitz, Eric (2023 ). "Sparks of Artificial General Intelligence: Early experiments with GPT-4". arXiv preprint. arXiv:2303.12712. GPT-4 reveals stimulates of AGI.
^ Butler, Octavia E. (1993 ). Parable of the Sower. Grand Central Publishing. ISBN 978-0-4466-7550-5. All that you touch you change. All that you change changes you.
^ Vinge, Vernor (1992 ). A Fire Upon the Deep. Tor Books. ISBN 978-0-8125-1528-2. The Singularity is coming.
^ Morozov, Evgeny (30 June 2023). "The True Threat of Artificial Intelligence". The New York City Times. The real danger is not AI itself but the method we deploy it.
^ "Impressed by artificial intelligence? Experts say AGI is following, and king-wifi.win it has 'existential' dangers". ABC News. 23 March 2023. Retrieved 6 April 2023. AGI might posture existential threats to mankind.
^ Bostrom, Nick (2014 ). Superintelligence: Paths, Dangers, Strategies. Oxford University Press. ISBN 978-0-1996-7811-2. The first superintelligence will be the last innovation that humanity needs to make.
^ Roose, Kevin (30 May 2023). "A.I. Poses 'Risk of Extinction,' Industry Leaders Warn". The New York City Times. Mitigating the risk of termination from AI must be an international concern.
^ "Statement on AI Risk". Center for AI Safety. Retrieved 1 March 2024. AI specialists alert of threat of extinction from AI.
^ Mitchell, Melanie (30 May 2023). "Are AI's Doomsday Scenarios Worth Taking Seriously?". The New York Times. We are far from creating makers that can outthink us in basic ways.
^ LeCun, Yann (June 2023). "AGI does not provide an existential risk". Medium. There is no reason to fear AI as an existential threat.
^ Kurzweil 2005, p. 260.
^ a b Kurzweil, Ray (5 August 2005), "Long Live AI", Forbes, archived from the initial on 14 August 2005: Kurzweil describes strong AI as "maker intelligence with the complete variety of human intelligence.".
^ "The Age of Artificial Intelligence: George John at TEDxLondonBusinessSchool 2013". Archived from the initial on 26 February 2014. Retrieved 22 February 2014.
^ Newell & Simon 1976, This is the term they utilize for "human-level" intelligence in the physical sign system hypothesis.
^ "The Open University on Strong and Weak AI". Archived from the initial on 25 September 2009. Retrieved 8 October 2007.
^ "What is artificial superintelligence (ASI)?|Definition from TechTarget". Enterprise AI. Retrieved 8 October 2023.
^ "Artificial intelligence is transforming our world - it is on everybody to make certain that it works out". Our World in Data. Retrieved 8 October 2023.
^ Dickson, Ben (16 November 2023). "Here is how far we are to attaining AGI, according to DeepMind". VentureBeat.
^ McCarthy, John (2007a). "Basic Questions". Stanford University. Archived from the original on 26 October 2007. Retrieved 6 December 2007.
^ This list of intelligent traits is based on the subjects covered by major AI textbooks, including: Russell & Norvig 2003, Luger & Stubblefield 2004, Poole, Mackworth & Goebel 1998 and Nilsson 1998.
^ Johnson 1987.
^ de Charms, R. (1968 ). Personal causation. New York City: Academic Press.
^ a b Pfeifer, R. and Bongard J. C., How the body shapes the way we believe: a brand-new view of intelligence (The MIT Press, 2007). ISBN 0-2621-6239-3.
^ White, R. W. (1959 ). "Motivation reconsidered: The idea of competence". Psychological Review. 66 (5 ): 297-333. doi:10.1037/ h0040934. PMID 13844397. S2CID 37385966.
^ White, R. W. (1959 ). "Motivation reconsidered: The principle of competence". Psychological Review. 66 (5 ): 297-333. doi:10.1037/ h0040934. PMID 13844397. S2CID 37385966.
^ Muehlhauser, Luke (11 August 2013). "What is AGI?". Machine Intelligence Research Institute. Archived from the original on 25 April 2014. Retrieved 1 May 2014.
^ "What is Artificial General Intelligence (AGI)?|4 Tests For Ensuring Artificial General Intelligence". Talky Blog. 13 July 2019. Archived from the original on 17 July 2019. Retrieved 17 July 2019.
^ Kirk-Giannini, Cameron Domenico; Goldstein, Simon (16 October 2023). "AI is closer than ever to passing the Turing test for 'intelligence'. What occurs when it does?". The Conversation. Retrieved 22 September 2024.
^ a b Turing 1950.
^ Turing, Alan (1952 ). B. Jack Copeland (ed.). Can Automatic Calculating Machines Be Said To Think?. Oxford: Oxford University Press. pp. 487-506. ISBN 978-0-1982-5079-1.
^ "Eugene Goostman is a genuine young boy - the Turing Test states so". The Guardian. 9 June 2014. ISSN 0261-3077. Retrieved 3 March 2024.
^ "Scientists dispute whether computer system 'Eugene Goostman' passed Turing test". BBC News. 9 June 2014. Retrieved 3 March 2024.
^ Jones, Cameron R.; Bergen, Benjamin K. (9 May 2024). "People can not differentiate GPT-4 from a human in a Turing test". arXiv:2405.08007 [cs.HC]
^ Varanasi, Lakshmi (21 March 2023). "AI designs like ChatGPT and GPT-4 are acing everything from the bar exam to AP Biology. Here's a list of challenging exams both AI versions have actually passed". Business Insider. Retrieved 30 May 2023.
^ Naysmith, Caleb (7 February 2023). "6 Jobs Artificial Intelligence Is Already Replacing and How Investors Can Take Advantage Of It". Retrieved 30 May 2023.
^ Turk, Victoria (28 January 2015). "The Plan to Replace the Turing Test with a 'Turing Olympics'". Vice. Retrieved 3 March 2024.
^ Gopani, Avi (25 May 2022). "Turing Test is unreliable. The Winograd Schema is outdated. Coffee is the answer". Analytics India Magazine. Retrieved 3 March 2024.
^ Bhaimiya, Sawdah (20 June 2023). "DeepMind's co-founder recommended testing an AI chatbot's ability to turn $100,000 into $1 million to determine human-like intelligence". Business Insider. Retrieved 3 March 2024.
^ Suleyman, Mustafa (14 July 2023). "Mustafa Suleyman: My new Turing test would see if AI can make $1 million". MIT Technology Review. Retrieved 3 March 2024.
^ Shapiro, Stuart C. (1992 ). "Expert System" (PDF). In Stuart C. Shapiro (ed.). Encyclopedia of Artificial Intelligence (Second ed.). New York: John Wiley. pp. 54-57. Archived (PDF) from the initial on 1 February 2016. (Section 4 is on "AI-Complete Tasks".).
^ Yampolskiy, Roman V. (2012 ). Xin-She Yang (ed.). "Turing Test as a Specifying Feature of AI-Completeness" (PDF). Expert System, Evolutionary Computation and Metaheuristics (AIECM): 3-17. Archived (PDF) from the initial on 22 May 2013.
^ "AI Index: State of AI in 13 Charts". Stanford University Human-Centered Artificial Intelligence. 15 April 2024. Retrieved 27 May 2024.
^ Crevier 1993, pp. 48-50.
^ Kaplan, Andreas (2022 ). "Expert System, Business and Civilization - Our Fate Made in Machines". Archived from the initial on 6 May 2022. Retrieved 12 March 2022.
^ Simon 1965, p. 96 priced estimate in Crevier 1993, p. 109.
^ "Scientist on the Set: An Interview with Marvin Minsky". Archived from the initial on 16 July 2012. Retrieved 5 April 2008.
^ Marvin Minsky to Darrach (1970 ), priced estimate in Crevier (1993, p. 109).
^ Lighthill 1973; Howe 1994.
^ a b NRC 1999, "Shift to Applied Research Increases Investment".
^ Crevier 1993, pp. 115-117; Russell & Norvig 2003, pp. 21-22.
^ Crevier 1993, p. 211, Russell & Norvig 2003, p. 24 and see also Feigenbaum & McCorduck 1983.
^ Crevier 1993, pp. 161-162, 197-203, 240; Russell & Norvig 2003, p. 25.
^ Crevier 1993, pp. 209-212.
^ McCarthy, John (2000 ). "Reply to Lighthill". Stanford University. Archived from the initial on 30 September 2008. Retrieved 29 September 2007.
^ Markoff, John (14 October 2005). "Behind Artificial Intelligence, a Squadron of Bright Real People". The New York Times. Archived from the original on 2 February 2023. Retrieved 18 February 2017. At its low point, some computer system researchers and software application engineers prevented the term synthetic intelligence for fear of being considered as wild-eyed dreamers.
^ Russell & Norvig 2003, pp. 25-26
^ "Trends in the Emerging Tech Hype Cycle". Gartner Reports. Archived from the initial on 22 May 2019. Retrieved 7 May 2019.
^ a b Moravec 1988, p. 20
^ Harnad, S. (1990 ). "The Symbol Grounding Problem". Physica D. 42 (1-3): 335-346. arXiv: cs/9906002. Bibcode:1990 PhyD ... 42..335 H. doi:10.1016/ 0167-2789( 90 )90087-6. S2CID 3204300.
^ Gubrud 1997
^ Hutter, Marcus (2005 ). Universal Artificial Intelligence: Sequential Decisions Based Upon Algorithmic Probability. Texts in Theoretical Computer Technology an EATCS Series. Springer. doi:10.1007/ b138233. ISBN 978-3-5402-6877-2. S2CID 33352850. Archived from the initial on 19 July 2022. Retrieved 19 July 2022.
^ Legg, Shane (2008 ). Machine Super Intelligence (PDF) (Thesis). University of Lugano. Archived (PDF) from the initial on 15 June 2022. Retrieved 19 July 2022.
^ Goertzel, Ben (2014 ). Artificial General Intelligence. Lecture Notes in Computer Technology. Vol. 8598. Journal of Artificial General Intelligence. doi:10.1007/ 978-3-319-09274-4. ISBN 978-3-3190-9273-7. S2CID 8387410.
^ "Who created the term "AGI"?". goertzel.org. Archived from the original on 28 December 2018. Retrieved 28 December 2018., through Life 3.0: 'The term "AGI" was promoted by ... Shane Legg, Mark Gubrud and Ben Goertzel'
^ Wang & Goertzel 2007
^ "First International Summer School in Artificial General Intelligence, Main summer season school: June 22 - July 3, 2009, OpenCog Lab: July 6-9, 2009". Archived from the initial on 28 September 2020. Retrieved 11 May 2020.
^ "Избираеми дисциплини 2009/2010 - пролетен триместър" [Elective courses 2009/2010 - spring trimester] Факултет по математика и информатика [Faculty of Mathematics and Informatics] (in Bulgarian). Archived from the original on 26 July 2020. Retrieved 11 May 2020.
^ "Избираеми дисциплини 2010/2011 - зимен триместър" [Elective courses 2010/2011 - winter season trimester] Факултет по математика и информатика [Faculty of Mathematics and Informatics] (in Bulgarian). Archived from the original on 26 July 2020. Retrieved 11 May 2020.
^ Shevlin, Henry; Vold, Karina; Crosby, Matthew; Halina, Marta (4 October 2019). "The limits of maker intelligence: Despite progress in device intelligence, synthetic basic intelligence is still a major difficulty". EMBO Reports. 20 (10 ): e49177. doi:10.15252/ embr.201949177. ISSN 1469-221X. PMC 6776890. PMID 31531926.
^ Bubeck, Sébastien; Chandrasekaran, Varun; Eldan, Ronen; Gehrke, Johannes; Horvitz, Eric; Kamar, Ece; Lee, Peter; Lee, Yin Tat; Li, Yuanzhi; Lundberg, Scott; Nori, Harsha; Palangi, Hamid; Ribeiro, Marco Tulio; Zhang, Yi (27 March 2023). "Sparks of Artificial General Intelligence: Early explores GPT-4". arXiv:2303.12712 [cs.CL]
^ "Microsoft Researchers Claim GPT-4 Is Showing "Sparks" of AGI". Futurism. 23 March 2023. Retrieved 13 December 2023.
^ Allen, Paul; Greaves, Mark (12 October 2011). "The Singularity Isn't Near". MIT Technology Review. Retrieved 17 September 2014.
^ Winfield, Alan. "Expert system will not turn into a Frankenstein's beast". The Guardian. Archived from the initial on 17 September 2014. Retrieved 17 September 2014.
^ Deane, George (2022 ). "Machines That Feel and Think: The Role of Affective Feelings and Mental Action in (Artificial) General Intelligence". Artificial Life. 28 (3 ): 289-309. doi:10.1162/ artl_a_00368. ISSN 1064-5462. PMID 35881678. S2CID 251069071.
^ a b c Clocksin 2003.
^ Fjelland, Ragnar (17 June 2020). "Why general expert system will not be realized". Humanities and Social Sciences Communications. 7 (1 ): 1-9. doi:10.1057/ s41599-020-0494-4. hdl:11250/ 2726984. ISSN 2662-9992. S2CID 219710554.
^ McCarthy 2007b.
^ Khatchadourian, Raffi (23 November 2015). "The Doomsday Invention: Will synthetic intelligence bring us utopia or destruction?". The New Yorker. Archived from the original on 28 January 2016. Retrieved 7 February 2016.
^ Müller, V. C., & Bostrom, N. (2016 ). Future development in synthetic intelligence: A study of expert opinion. In Fundamental concerns of expert system (pp. 555-572). Springer, Cham.
^ Armstrong, Stuart, and Kaj Sotala. 2012. "How We're Predicting AI-or Failing To." In Beyond AI: Artificial Dreams, edited by Jan Romportl, Pavel Ircing, Eva Žáčková, Michal Polák and Radek Schuster, 52-75. Plzeň: University of West Bohemia
^ "Microsoft Now Claims GPT-4 Shows 'Sparks' of General Intelligence". 24 March 2023.
^ Shimek, Cary (6 July 2023). "AI Outperforms Humans in Creativity Test". Neuroscience News. Retrieved 20 October 2023.
^ Guzik, Erik E.; Byrge, Christian; Gilde, Christian (1 December 2023). "The creativity of devices: AI takes the Torrance Test". Journal of Creativity. 33 (3 ): 100065. doi:10.1016/ j.yjoc.2023.100065. ISSN 2713-3745. S2CID 261087185.
^ Arcas, Blaise Agüera y (10 October 2023). "Artificial General Intelligence Is Already Here". Noema.
^ Zia, Tehseen (8 January 2024). "Unveiling of Large Multimodal Models: Shaping the Landscape of Language Models in 2024". Unite.ai. Retrieved 26 May 2024.
^ "Introducing OpenAI o1-preview". OpenAI. 12 September 2024.
^ Knight, Will. "OpenAI Announces a New AI Model, Code-Named Strawberry, That Solves Difficult Problems Step by Step". Wired. ISSN 1059-1028. Retrieved 17 September 2024.
^ "OpenAI Employee Claims AGI Has Been Achieved". Orbital Today. 13 December 2024. Retrieved 27 December 2024.
^ "AI Index: State of AI in 13 Charts". hai.stanford.edu. 15 April 2024. Retrieved 7 June 2024.
^ "Next-Gen AI: OpenAI and Meta's Leap Towards Reasoning Machines". Unite.ai. 19 April 2